Huge Variety of **Dimensions**

Note! Refill of microbore, analytical or preparative columns saves costs over the life of the hardware.

Hugh Variety of Selectivity

Hugh Variety of Selectivity

Comparison of the selectivity of

Laboratory experiments demonstrate time and again the wide disparity in retention behavior of superficially comparable ODS-silica phases and the same is true also for other coatings. Thus, in order to provide as wide a palette of selectivities as possible to enable the solution of even the most complex

GROM-SIL 100 ODS-0 AB

High-quality phase with special endcapping for the outstanding separation of acids and bases.

GROM-SIL 100 ODS-1 PE

Economical phase with partial endcapping and high selectivity.

GROM-SIL 100 ODS-2 FE

Fully endcapped stationary phase with outstanding selectivity for most applications.

GROM-SIL 120 ODS-3 CP

Encapsulated, chemically stable phase with metal-free silica gel matrix.

GROM-SIL 120 ODS-4 HE

High resolution - a new hydrophylic endcapping makes this phase especially suitable for peptides.

GROM-SIL 120 ODS-5 ST

Standard phase for practically all applications.

GROM-SIL 120 ODS-6 NE

ODS phase for special applications. High hydrophobicity despite the absence of endcapping.

GROM-SIL 80 ODS-7 pH

Polymer-coated, pH-stable phase with extremely high carbon-content.

Comparison of Selectivity

GROM SIL C18- and C8-phases

the most complex analytical problems by HPLC, eight different **GROM** SIL ODS-phases and six different **GROM** SIL octyl phases have been developed. Chromatograms of a test mixture (modified test of T. Daldrup and B. Kardel, Chromatographia 18, 81-83, 1984) run under identical

conditions demonstrate the different hydrophobicity, and thus the selectivity, of the various differently prepared stationary phases. This is exemplified by the differing retention times of toluene and in particular of the basic components.

Test chromatograms: "extended Daldrup test"

Column: Flow rate: Eluent: NovoGrom 250 mm x 4.0 mm id. 1.0 ml/min

Na-phosphate buffer, 50 mM, pH 2.3 / acetonitrile = 58 /42 + 420 ml acetonitrile

Detection (UV): 230 nm

GROM-SIL 100 Octyl-1 B

Base-deactivated phase with enhanced selectivity.

GROM-SIL 100 Octyl-2 AB

Acid- and base-deactivated phase specially suitable for the separation of acids and bases.

GROM-SIL 120 Octyl-3 BA

Tailor-made for the separation of basic molecules, monomeric bonding of alkyl silanes with differing chain lengths.

GROM-SIL 120 Octyl-4 FE

Fully endcapped octyl phase, "monomerically bound" and thus highly versatile.

GROM-SIL 120 Octyl-5 CP

Octyl-phase on silicone-encapsulated particles, particularly long lived.

GROM-SIL 120 Octyl-6 MB

Densely coated C8 phase, endcapped, for acidic and basic compounds.

Compounds injected:

1) uracil 2) 4-hydroxybenzoic acid 3) diphenylhydramine

- 4) 5-(p-methylphenyl)-5-
- phenylhydantoin 5) diazepam
- 6) toluene

Overview of GROM SIL phases

Stationary Phase Particle Size μ m prep. poly- end-meric Pore Diameter							Pore Diameter							
	,		1.5	2	3	4	. 5	7		mant	sphe- rical	600		Å
<mark>C1</mark> 8		. ODS-0 AB (acid/base deactivated)	X		X		X X		X		Х	X		100
		. ODS-1 PE (partially endcapped)			х		Х		Х		х	Х		80, 100
		ODS-2 FE (fully endcapped)	X		X		X X	х	Х		Х	Х		80, 100, 300
		ODS-3 CP (encapsulated)			X		X	X	X	х	Х		Х	120, 300
		. ODS-4 HE (hydrophilic endcapping) . ODS-5 ST (standard)			X	X	X	X			X			120, 200 60, 120, 200, 300
		. ODS-5 ST (standard) . ODS-6 NE (non endcapped)			X X	Х	X X	Х	X	Х	Х	Х		120
		. ODS-7 pH (pH-stable)				Х	^						Х	80
						^							^	
	GROM Sapp	hire C18			x		x		х	х	Х	x		65, 110
	GROM Ruby			Х							X	X	Х	110
	<u>, , , , , , , , , , , , , , , , , , , </u>													
C8		. Octyl-1 B (base deactivated)			X		X				x	X		100
		. Octyl-2 AB (acid/base deactivated)			X		Х				X	X		100
		. Octyl-3 BA (for bases)			X		Х				X	X		120
		. Octyl-4 FE (fully endcapped)			X		Х			Х	X	X		80, 100, 300
		. Octyl-5 CP (encapsulated)			X		X	X	X	Х	X		Х	120, 300
	GROIVI-SIL	. Octyl-6 MB (monomer binding)			X		Х		Х	Х	Х	X		120, 200, 300
	GROM Sapp	hiro C2			V		V		V	V	V	X		65, 110
	GROM Ruby			X	X		Х		Х	Х	X X	X	х	110
	GROWINDS												^	
C6	GROM-SIL	. Hexyl-1 MB (monomeric bonding)					Х			X	X	X		80, 100
		· · · · · · · · · · · · · · · · · · ·												
	GROM-SIL	. Phenyl-1 FE (fully endcapped)			Х		Х		Х	Х	X	Х		120, 300
	GROM-SIL	. Phenyl-2 CP (encapsulated)					Х						Х	120, 300
	GROM-SIL	. Phenyl-3 PE (partially endcapped)			Х		Х		Х	Х	Х	Х		80, 100
C4		. Butyl-1 ST (standard)			X		X				X			120, 300
	GROIVI-SIL	. Butyl-2 FE (fully endcapped)			X		X			Х	X			300
	GROM Sapp	hiro CA			X		X			X	X	X		65, 110
	аком зарр	The C4			X				×	×	X	X		05, 110
C1	GROM-SIL	. TMS-1 ST (standard)			x		X			x	Х	x		120, 300
. .		. TMS-2 CP (encapsulated)			X		X			X	X		х	120, 300
														. 20, 000
CN	GROM-SIL	.Cyan-1 ST (standard)			Х		Х				Х	Х		120, 300
		.Cyan-2 PR (cyanopropyl)			X		X				x	X		80, 100
	GROM-SIL	.Cyan-3 CP (encapsulated)					Х				X		Х	120
NH ₂		Amino-1 PR (NH ₂ -propyl)			X		Х		X		X	X		80, 100
		Amino-2 PA (cross linked Poly- NH ₂)					Х				X		Х	120
		Amino-3 CP (encapsulated NH ₂ -residues)	、				Х			Х		X		80
	GROM-SIL	Amino-4 PR (propylamine bonded to silica)		X			X		Х				300
Dial	GROM-SIL	Dial					V		X	V	X			60, 120, 200, 300
וטוש	GROIVI-SIL	טוטו.					X		X	Х	Х			00, 120, 200, 300
Si	GROM-SIL	Normal Phase-1 ST (standard silica)			x		x		X	Х	X			80, 100, 1000
		Normal Phase-2 SP (spherical silica)			X		X			X	X			60, 120, 200,1000
		Normal Phase-3 PV (polyvinylalcohol)					X				x		х	120
	GROM-Sapp	hire			X		X		X	Х	X			65, 110
IEX		SEC (size exclusion chromatography)					X			Х	X			60, 120, 200, 300
		.StrongAnion-1,					Х		X		X			80, 100
		.Weak Anion-2(ion exchange) .StrongCation-1 (ion exchange)					V	X	V		X			300 80, 100
		.Weak Cation-2(ion exchange)					Х	X	Х		X X			300
		.HIC (hydrophobic interaction chrom.)						X			X			300
	Show Sie													500

Chiral Stationary Phases for Pharmacology, Medicine and

	Surface Area m²/g	Pore Volumne ml/g	% C	Recommended pH of Mobile Phase	Field of Applications	Abbreviation
	3	5	4.4			
	200	0.5	11	2 - 8	fat-soluble Vitamins,	GS OD 0
	220, 200	0.5, 0.5	7,6		Drugs: Antibiotics, Anti-	GS OD 1
	220, 200, 100	0.5, 0.78, 1	12, 11, 6		histamines, Barbiturates	GS OD 2
	320, 170	0.8, 0.7	15, 6	1 - 10	etc , Herbicides, Fungi-	GS OD 3
	300, 200	1.0, 0.95	16, 11		cides, Bacteriocides,	GS OD 4
	580, 300, 200, 150	1.1, 1.0, 0.95, 0.7	22, 17,12		Pesticides, Nucleotides,	GS OD 5
3	300	1.0	17	2 - 8	Catecholamines,	GS OD 6
	510	1.0	22	1 - 10	Peptides, Proteins,	GS OD 7
5	500, 270	0.9, 1.1	23, 16	1.5 - 9		GS OD S
1	130	0.3	11	1.5 - 9		GS OD R
2	200	0.5	6.5	2 - 8	Peptides, Proteins, Nucleo-	GS OC 1
	200	0.5	5	2 - 8	tides, basic compounds,	GS OC 2
	300	1.0	9	2 - 8	(Amines, etc.), Fatty acids	GS OC 3
	220, 200, 100	0.5, 0.5, 0.78	6.6, 6, 3	2 - 8	(phenacyl derivatives),	GS OC 4
	320, 170	0.8, 0.7	10, 5.5	1 - 10	Angiotensins, drugs ,	GS OC 5
	300, 200, 150	1, 0.95, 0.7	10, 7, 4	2 - 8	Antihistamines,	GS OC 6
-		., 0.00, 0.7	10, 7, 7	2 0		
	500, 270	0.9, 1.1	15, 10	1.5 - 9		GS OC S
	130	0.3	7	1.5 - 9		GS OC R
	150	0.5	/	1.5-9		US UC IV
-	220, 200	0.5, 0.5	4, 4	2 - 8	Vitamins, Bile acids,	GS HE 1
2	220, 200	0.5, 0.5	4,4	2-0	Polyphenols,	US TIL 1
-	300, 150	1.0, 0.7	0 5	2 - 8	rolyphenois,	GS PH 1
	· · · · ·		9,5			
	320, 170	0.8, 0.7	7,4	1.5 - 9		GS PH 2
۷	220, 200	0.5, 0.5	6.6, 6	2 - 8		GS PH 3
_		1007	7 2 5	2 0	Dustaine Catadaine	
	300, 150	1.0, 0.7	7, 2.5	2 - 8	Proteins, Catechins,	GS BU 1
1	100	1.0	1,5	2 - 8	Vitamins,	GS BU 2
	-00 070		105 7	4 5 0		CC DU C
-	500, 270	0.9, 0.9	10.5, 7	1.5 - 9		GS BU S
_		4.0.07		2 0		
	300, 150	1.0, 0.7	4	2 - 8	SFC, H ₂ O-sol. Vitamins,	GS TM 1
3	320, 170	0.8, 0.7	3	1.5 - 8	Analgesics, Phenols,	GS TM 2
	300, 150	1.0, 0.7	4.8	2 - 8	Steroids, Antidepressives,	GS CN 1
	220, 200	0.5, 0.5	3.5	2 - 8	Polyphenols, Alkaloids,	GS CN 2
3	320	0.8	4	1,5 - 8	SFC,	GS CN 3
2	220, 200	0,5	2	2 - 8	Mono-,Oligosacharides,	GS NH 1
3	300	1.0		2 - 8	(Analysis of beverages),	GS NH 2
Z	120	1.1		1.5 - 9	H ₂ O-soluble Vitamins,	GS NH 3
	100	0.78		2 - 8	Additives, Steroids,	GS NH 4
	580, 300, 200, 150	1.1, 1.0, 0.95, 0.7		2 - 8		GS OH 1
-		,, 0		20		
7	220, 200,	0.5, 0.5,, 1.25		2 - 8	Vitamins, Cortisone,	GS NP 1
	580, 300, 200,	1.1, 1.0, 0.95,		2 - 8	SFC, Drugs,	GS NP 2
	300	1.0		2 - 8	Lipids, Steroids, Purines,	GS NP 3
-		1.0		2 0	Aflatoxins,	G5 NI 5
	500, 270	0.9, 1.1		2 - 8	tricyclic Antidepressives,	GS NP S
	500, 270	0.9, 1.1		2 - 0	incyclic Antidepressives,	05 101 5
	200 200 200 100	1110.000.07		2 0	Poptidos Chroppotoine	CC CE 1
	580, 300, 200, 150	1.1, 1.0, 0.95, 0.7		2 - 8	Peptides, Glycoproteins,	GS SE 1
	220, 200	0.5, 0.5		2 - 8	Nucleosides, Nucleotides,	GS SA 1
	100	0.7		2 - 8	Nucleic acids (DNAs,	GS WA 1
	220, 200	0.5, 0.5		2 - 8	RNAs), Polysaccharides, etc.,	GS SC 1
	100 100	0.7 0.7		2 - 8 2 - 8		GS WC 1 GS HI 1

H Y

D R O P H O B I C I T Y

Alkylation of **GROM-SIL** reversed phases

In addition to the standard alkylation techniques, silica gels for reversed phase HPLC may be prepared by the more recently developed, alternative method of "polymer encapsulation". Here, *GROM*-SIL particles are coated with a reactive polymeric silicone film which binds chemically to the surface of the silica gel. This chemically bound film is then alkylated. The spherical encapsulated silica particles possess the same mechanical strength as non-coated particles. In the case of the polymer encapsulated phases, the alkyl moieties are bound to silicon atoms in the polymer film rather than directly via Si-O-Si alkyl bonding to the silica surface. This leads to a considerable increase in chemical stability.